Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 438
Filtrar
1.
Exp Cell Res ; 439(1): 114074, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38710403

RESUMO

Ferroptosis inhibits tumor progression in pancreatic cancer cells, while PITX2 is known to function as a pro-oncogenic factor in various tumor types, protecting them from ferroptosis and thereby promoting tumor progression. In this study, we sought to investigate the regulatory role of PITX2 in tumor cell ferroptosis within the context of pancreatic cancer. We conducted PITX2 knockdown experiments using lentiviral infection in two pancreatic cancer cell lines, namely PANC-1 and BxPC-3. We assessed protein expression through immunoblotting and mRNA expression through RT-PCR. To confirm PITX2 as a transcription factor for GPX4, we employed Chromatin Immunoprecipitation (ChIP) and Dual-luciferase assays. Furthermore, we used flow cytometry to measure reactive oxygen species (ROS), lipid peroxidation, and apoptosis and employed confocal microscopy to assess mitochondrial membrane potential. Additionally, electron microscopy was used to observe mitochondrial structural changes and evaluate PITX2's regulation of ferroptosis in pancreatic cancer cells. Our findings demonstrated that PITX2, functioning as a transcription factor for GPX4, promoted GPX4 expression, thereby exerting an inhibitory effect on ferroptosis in pancreatic cancer cells and consequently promoting tumor progression. Moreover, PITX2 enhanced the invasive and migratory capabilities of pancreatic cancer cells by activating the WNT signaling pathway. Knockdown of PITX2 increased ferroptosis and inhibited the proliferation of PANC-1 and BxPC-3 cells. Notably, the inhibitory effect on ferroptosis resulting from PITX2 overexpression in these cells could be countered using RSL3, an inhibitor of GPX4. Overall, our study established PITX2 as a transcriptional regulator of GPX4 that could promote tumor progression in pancreatic cancer by reducing ferroptosis. These findings suggest that PITX2 may serve as a potential therapeutic target for combating ferroptosis in pancreatic cancer.

2.
Comput Struct Biotechnol J ; 23: 1689-1704, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38689717

RESUMO

Background: Mounting evidence underscores the importance of cell communication within the tumor microenvironment, which is pivotal in tumor proliferation, invasion, and metastasis. Exosomes play a crucial role in cell-to-cell communication. Although single-cell RNA sequencing (scRNA-seq) provides insights into individual cell transcriptional characteristics, it falls short of comprehensively capturing exosome-mediated intercellular communication. Method: We analyzed Pancreatic Ductal Adenocarcinoma (PDAC) tissues, separating supernatant and precipitate for exosome purification and single-cell nucleus suspension. We then constructed Single-nucleus RNA sequencing (snRNA-seq) and small RNA-seq libraries from these components. Our bioinformatic analysis integrated these sequences with ligand-receptor analysis and public miRNA data to map the cell communication network. Results: We established intercellular communication networks using bioinformatic analysis to track exosome miRNA effects and ligand-receptor pairs. Significantly, hsa-miR-1293 emerged as a prognostic biomarker for pancreatic cancer, linked to immune evasion, increased myeloid-derived suppressor cells, and poorer prognosis. Targeting this miRNA may enhance anti-tumor immunity and improve outcomes. Conclusion: Our study offers a novel approach to constructing intercellular communication networks using snRNA-seq and exosome-small RNA sequencing. By integrating miRNA tracing with ligand-receptor analysis, we illuminate the complex interactions in the pancreatic cancer microenvironment, highlighting the pivotal role of miRNAs and identifying potential biomarkers and therapeutic targets.

3.
EBioMedicine ; 103: 105098, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38608514

RESUMO

BACKGROUND: The widespread involvement of tumor-infiltrating B cells highlights their potential role in tumor behavior. However, B cell heterogeneity in PDAC remains unexplored. Studying TIL-Bs in PDAC aims to identify new treatment strategies. METHODS: We performed single-cell RNA sequencing to study the heterogeneity of B cells in PDAC. The prognostic and immunologic value of the identified CD38+ B cells was explored in FUSCC (n = 147) and TCGA (n = 176) cohorts. Flow cytometry was conducted to characterize the relationship between CD38+ B cells and other immune cells, as well as their phenotypic features. In vitro and in vivo experiments were performed to assess the putative effect of CD38+ B cells on antitumor immunity. FINDINGS: The presence of CD38+ B cells in PDAC was associated with unfavorable clinicopathological features and poorer overall survival (p < 0.001). Increased infiltration of CD38+ B cells was accompanied by reduced natural killer (NK) cells (p = 0.021) and increased regulatory T cells (p = 0.016). Molecular profiling revealed high expression of IL-10, IL-35, TGF-ß, GZMB, TIM-1, CD5 and CD21, confirming their putative regulatory B cell-like features. Co-culture experiments demonstrated suppression of NK cell cytotoxicity by CD38+ B cell-derived IL-10 (p < 0.001). Finally, in vivo experiments suggested adoptive transfer of CD38+ B cells reduced antitumor immunity and administration of a CD38 inhibitor hampered tumor growth (p < 0.001). INTERPRETATION: We discovered regulatory B cell-like CD38+ B cell infiltration as an independent prognostic factor in PDAC. The use of CD38 inhibitor may provide new possibilities for PDAC immunotherapy. FUNDING: This study was supported by the National Natural Science Foundation of China (U21A20374), Shanghai Municipal Science and Technology Major Project (21JC1401500), Scientific Innovation Project of Shanghai Education Committee (2019-01-07-00-07-E00057), Special Project for Clinical Research in the Health Industry of the Shanghai Health Commission (No. 20204Y0265) and Natural Science Foundation of Shanghai (23ZR1479300).

4.
Mol Cancer ; 23(1): 72, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38581001

RESUMO

For decades, great strides have been made in the field of immunometabolism. A plethora of evidence ranging from basic mechanisms to clinical transformation has gradually embarked on immunometabolism to the center stage of innate and adaptive immunomodulation. Given this, we focus on changes in immunometabolism, a converging series of biochemical events that alters immune cell function, propose the immune roles played by diversified metabolic derivatives and enzymes, emphasize the key metabolism-related checkpoints in distinct immune cell types, and discuss the ongoing and upcoming realities of clinical treatment. It is expected that future research will reduce the current limitations of immunotherapy and provide a positive hand in immune responses to exert a broader therapeutic role.


Assuntos
Imunidade , Neoplasias , Humanos , Imunoterapia , Imunomodulação , Neoplasias/terapia
5.
Cell Death Dis ; 15(4): 244, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38575607

RESUMO

The immunosuppressive microenvironment caused by several intrinsic and extrinsic mechanism has brought great challenges to the immunotherapy of pancreatic cancer. We identified GFPT2, the key enzyme in hexosamine biosynthesis pathway (HBP), as an immune-related prognostic gene in pancreatic cancer using transcriptome sequencing and further confirmed that GFPT2 promoted macrophage M2 polarization and malignant phenotype of pancreatic cancer. HBP is a glucose metabolism pathway leading to the generation of uridine diphosphate N-acetylglucosamine (UDP-GlcNAc), which is further utilized for protein O-GlcNAcylation. We confirmed GFPT2-mediated O-GlcNAcylation played an important role in regulating immune microenvironment. Through cellular proteomics, we identified IL-18 as a key downstream of GFPT2 in regulating the immune microenvironment. Through CO-IP and protein mass spectrum, we confirmed that YBX1 was O-GlcNAcylated and nuclear translocated by GFPT2-mediated O-GlcNAcylation. Then, YBX1 functioned as a transcription factor to promote IL-18 transcription. Our study elucidated the relationship between the metabolic pathway of HBP in cancer cells and the immune microenvironment, which might provide some insights into the combination therapy of HBP vulnerability and immunotherapy in pancreatic cancer.


Assuntos
Interleucina-18 , Neoplasias Pancreáticas , Humanos , Glicosilação , Interleucina-18/metabolismo , Neoplasias Pancreáticas/patologia , Proteínas/metabolismo , Vias Biossintéticas , Hexosaminas , Microambiente Tumoral , Proteína 1 de Ligação a Y-Box/metabolismo , Glutamina-Frutose-6-Fosfato Transaminase (Isomerizante)/genética
6.
Cancer Immunol Immunother ; 73(4): 61, 2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38430267

RESUMO

BACKGROUND: Recent progressions in CAR-T cell therapy against pancreatic ductal adenocarcinoma (PDAC) remain disappointing, which are partially attributed to the immunosuppressive microenvironment including macrophage-mediated T cell repletion. METHODS: We first characterized the expression patterns of macrophage-relevant chemokines and identified CXCR2 as the key factor regulating T cell trafficking and tumor-specific accumulation in PDAC microenvironment. After that, we synthesized and introduced a CXCR2 expression cascade into Claudin18.2 CAR-T cells and compared the behaviors of CAR-T cells in vitro and in vivo. The therapeutic potential of CXCR2 CAR-T was evaluated in two different allogeneic models: subcutaneous allografts and metastatic PDAC models. RESULTS: The results showed that CXCR2 CAR-T not only reduced the size of allografted PDAC tumors, but also completely eliminated the formation of metastases. Lastly, we investigated the tumor tissues and found that expression of ectopic CXCR2 significantly improved tumor-targeted infiltration and residence of T cells and reduced the presence of MDSCs and CXCR2 + macrophages in PDAC microenvironment. CONCLUSION: Our studies suggested that ectopic CXCR2 played a significant and promising role in improving the efficiency of CAR-T therapy against primary and metastatic PDAC and partially reversed the immune-suppressive microenvironment.


Assuntos
Adenocarcinoma , Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Receptores de Antígenos Quiméricos , Humanos , Neoplasias Pancreáticas/terapia , Carcinoma Ductal Pancreático/terapia , Progressão da Doença , Microambiente Tumoral
7.
Int J Biol Sci ; 20(5): 1833-1854, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38481814

RESUMO

The Warburg Effect is one of the most well-known cancer hallmarks. This metabolic pattern centered on lactate has extremely complex effects on various aspects of tumor microenvironment, including metabolic remodeling, immune suppression, cancer cell migration, and drug resistance development. Based on accumulating evidence, metabolites are likely to participate in the regulation of biological processes in the microenvironment and to form a feedback loop. Therefore, further revealing the key mechanism of lactate-mediated oncological effects is a reasonable scientific idea. The discovery and refinement of histone lactylation in recent years has laid a firm foundation for the above idea. Histone lactylation is a post-translational modification that occurs at lysine sites on histones. Specific enzymes, known as "writers" and "erasers", catalyze the addition or removal, respectively, of lactacyl group at target lysine sites. An increasing number of investigations have reported this modification as key to multiple cellular procedures. In this review, we discuss the close connection between histone lactylation and a series of biological processes in the tumor microenvironment, including tumorigenesis, immune infiltration, and energy metabolism. Finally, this review provides insightful perspectives, identifying promising avenues for further exploration and potential clinical application in this field of research.


Assuntos
Histonas , Neoplasias , Humanos , Epigênese Genética/genética , Lisina , Neoplasias/genética , Ácido Láctico , Microambiente Tumoral/genética
8.
Cancer Lett ; 588: 216769, 2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38438098

RESUMO

Cancer-associated fibroblasts (CAFs) play an important role in a variety of cancers. However, the role of tumor stroma in nonfunctional pancreatic neuroendocrine tumors (NF-PanNETs) is often neglected. Profiling the heterogeneity of CAFs can reveal the causes of malignant phenotypes in NF-PanNETs. Here, we found that patients with high stromal proportion had poor prognosis, especially for that with infiltrating stroma (stroma and tumor cells that presented an infiltrative growth pattern and no regular boundary). In addition, myofibroblastic CAFs (myCAFs), characterized by FAP+ and α-SMAhigh, were spatially closer to tumor cells and promoted the EMT and tumor growth. Intriguingly, only tumor cells which were spatially closer to myCAFs underwent EMT. We further elucidated that myCAFs stimulate TGF-ß expression in nearby tumor cells. Then, TGF-ß promoted the EMT in adjacent tumor cells and promoted the expression of myCAFs marker genes in tumor cells, resulting in distant metastasis. Our results indicate that myCAFs cause spatial heterogeneity of EMT, which accounts for liver metastasis of NF-PanNETs. The findings of this study might provide possible targets for the prevention of liver metastasis.


Assuntos
Fibroblastos Associados a Câncer , Neoplasias Hepáticas , Tumores Neuroendócrinos , Neoplasias Pancreáticas , Humanos , Linhagem Celular Tumoral , Tumores Neuroendócrinos/patologia , Fibroblastos Associados a Câncer/metabolismo , Neoplasias Pancreáticas/patologia , Fenótipo , Fator de Crescimento Transformador beta/metabolismo , Neoplasias Hepáticas/patologia , Microambiente Tumoral
9.
Br J Cancer ; 130(9): 1505-1516, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38454166

RESUMO

BACKGROUND: Pancreatic ductal adenocarcinoma (PDAC) is a malignancy with a 5-year survival rate of 12%. The abundant mesenchyme is partly responsible for the malignancy. The antifibrotic therapies have gained attention in recent research. However, the role of pirfenidone, an FDA-approved drug for idiopathic pulmonary fibrosis, remains unclear in PDAC. METHODS: Data from RNA-seq of patient-derived xenograft (PDX) models treated with pirfenidone were integrated using bioinformatics tools to identify the target of cell types and genes. Using confocal microscopy, qRT-PCR and western blotting, we validated the signalling pathway in tumour cells to regulate the cytokine secretion. Further cocultured system demonstrated the interplay to regulate stroma fibrosis. Finally, mouse models demonstrated the potential of pirfenidone in PDAC. RESULTS: Pirfenidone can remodulate multiple biological pathways, and exerts an antifibrotic effect through inhibiting the secretion of PDGF-bb from tumour cells by downregulating the TGM2/NF-kB/PDGFB pathway. Thus, leading to a subsequent reduction in collagen X and fibronectin secreted by CAFs. Moreover, the mice orthotopic pancreatic tumour models demonstrated the antifibrotic effect and potential to sensitise gemcitabine. CONCLUSIONS: Pirfenidone may alter the pancreatic milieu and alleviate fibrosis through the regulation of tumour-stroma interactions via the TGM2/NF-kB/PDGFB signalling pathway, suggesting potential therapeutic benefits in PDAC management.


Assuntos
Carcinoma Ductal Pancreático , Fibrose , Neoplasias Pancreáticas , Piridonas , Piridonas/farmacologia , Piridonas/uso terapêutico , Humanos , Animais , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Camundongos , Fibrose/tratamento farmacológico , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/patologia , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacologia , Desoxicitidina/uso terapêutico , Linhagem Celular Tumoral , Transdução de Sinais/efeitos dos fármacos , Gencitabina , Proteína 2 Glutamina gama-Glutamiltransferase , Microambiente Tumoral/efeitos dos fármacos , NF-kappa B/metabolismo
10.
Surgery ; 175(5): 1264-1275, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38302326

RESUMO

BACKGROUND: Although we have made progress in treatment and have increased the 5-year survival by ≤30% in pancreatic cancer, chemotherapy resistance remains a major obstacle. However, whether reprogrammed lipid metabolism contributes to chemoresistance still needs to be further studied. METHODS: Gene expression was determined using Western blotting and quantitative reverse transcription polymerase chain reaction. Cell cloning formation assay, Cell Counting Kit-8, EdU assay, wound healing assay, transwell assay, and flow cytometry were used to detect apoptosis, cell proliferation capacity, migration capacity, and cytotoxicity of gemcitabine. Confocal fluorescence microscopy, transmission electron microscopy, etc., were used to detect the changes in intracellular reactive oxygen species, glutathione, lipid peroxidation level, and cell morphology. An animal study was performed to evaluate the effect of CPT1B knockdown on tumor growth and gemcitabine efficacy. RESULTS: In our study, we observed that the CPT1B expression level was higher in pancreatic ductal adenocarcinoma tissues than in normal tissues and correlated with a low rate of survival. Moreover, silencing of CPT1B significantly suppressed the proliferative ability and metastasis of pancreatic cancer cells. Furthermore, we discovered that CPT1B interacts with Kelch-like ECH-associated protein 1, and CPT1B knockdown led to decreased NRF2 expression and ferroptosis induction. In addition, CPT1B expression increased after gemcitabine treatment, and it was highly expressed in gemcitabine-resistant pancreatic ductal adenocarcinoma cells. Finally, we discovered that ferroptosis induced by CPT1B knockdown enhanced the gemcitabine toxicity in pancreatic ductal adenocarcinoma. CONCLUSION: CPT1B may act as a promising target in treating patients with gemcitabine-resistant pancreatic ductal adenocarcinoma .


Assuntos
Carcinoma Ductal Pancreático , Carnitina O-Palmitoiltransferase , Ferroptose , Proteína 1 Associada a ECH Semelhante a Kelch , Fator 2 Relacionado a NF-E2 , Neoplasias Pancreáticas , Animais , Humanos , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patologia , Carnitina O-Palmitoiltransferase/metabolismo , Carnitina O-Palmitoiltransferase/farmacologia , Linhagem Celular Tumoral , Proliferação de Células , Resistencia a Medicamentos Antineoplásicos/genética , Gencitabina , Homeostase , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Oxirredução , Neoplasias Pancreáticas/genética
11.
Cancer Lett ; 588: 216741, 2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38395378

RESUMO

Characterization of tumor-responsive T cell receptors (TCRs) is a critical step in personalized TCR-T cell therapy, and remains challenging for pancreatic ductal adenocarcinoma (PDAC). Here we report a proof-of-concept study to identify and validate antitumor TCRs in two representative PDAC patients using ultradeep single-cell TCR/RNA sequencing and autologous organoids, and reveal the phenotypic dynamics of TCR repertoire in different T cell expansions from the same patient. We first performed comparative sequencing on freshly harvested peripheral blood mononuclear cells (PBMCs) and uncultured tumor infiltrating lymphocytes (TILs), followed by reactivity tests of TIL-enriched TCRs with autologous organoids, in which two tumor-responsive TCRs were successfully characterized and the corresponding TILs were mostly tissue-resident memory-like T cells, and partially expressed both naïve and exhausted T cell markers. For the PDAC patient without high-quality TILs, PBMCs were cultured with neoantigen peptide (KRASG12D), organoids, or anti-CD3 antibody in presence, and experienced extensive clonal expansions within ten days. All derived PBMCs were sequenced in parallel (>82,000 cells), and TCRs enriched in both peptide- and organoid-experienced, but not anti-CD3-treated CD8 T cells, were assessed for their reactivity to antigen-presenting cells (APCs) and organoids, in which three neoantigen-reactive TCRs were identified as tumor-responsive, and the corresponding T cells were characterized by mixed transcriptional signatures including but not limited to typical exhausted T cell markers. Together, our study revealed that the combination of ultradeep single-cell sequencing and organoid techniques enabled rapid characterization of tumor-responsive TCRs for developing practical personalized TCR-T therapy in an antigen/human leukocyte antigen (HLA)-agnostic manner.


Assuntos
Neoplasias Pancreáticas , Receptores de Antígenos de Linfócitos T , Humanos , Receptores de Antígenos de Linfócitos T/genética , Linfócitos do Interstício Tumoral , Linfócitos T CD8-Positivos , Antígenos de Neoplasias/genética , Antígenos HLA , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/terapia , Complexo CD3 , Antígenos de Histocompatibilidade Classe II , Peptídeos , Organoides
12.
Acta Biochim Biophys Sin (Shanghai) ; 56(4): 513-524, 2024 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-38229544

RESUMO

Thioredoxin-interacting protein (TXNIP) is a crucial thioredoxin-binding protein that is recognized as a tumor suppressor in diverse malignancies, such as breast cancer, lung cancer, hepatocellular carcinoma, and thyroid cancer. However, the specific role and molecular mechanisms of TXNIP in the pathogenesis and progression of pancreatic cancer cells have not been determined. In this study, we investigate the relationship between TXNIP expression and overall survival prognosis in pancreatic cancer patients. Mechanistic studies are conducted to reveal the role of TXNIP in pancreatic cancer cell proliferation, migration, and regulation during malignancy. Our findings indicate that patients with high TXNIP expression have a more favorable prognosis. In vitro experiments with pancreatic cell lines show that overexpression of TXNIP suppresses the proliferation and migration of pancreatic cancer cells. Furthermore, we find that TXNIP inhibits the activation of the MAPK signaling pathway, thereby decreasing the malignant potential of pancreatic cancer. In conclusion, our study reveals TXNIP as a promising new predictive marker and therapeutic target for pancreatic cancer.


Assuntos
Neoplasias Hepáticas , Neoplasias Pancreáticas , Humanos , Linhagem Celular Tumoral , Neoplasias Pancreáticas/metabolismo , Transdução de Sinais , Tiorredoxinas/genética , Tiorredoxinas/metabolismo , Neoplasias Hepáticas/patologia , Proliferação de Células , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo
13.
World J Surg Oncol ; 22(1): 1, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38169384

RESUMO

BACKGROUND: There is no evidence supporting the feasibility of laparoscopic pancreaticoduodenectomy (LPD) compared to open pancreatoduodenectomy (OPD) following neoadjuvant chemotherapy (NACT) for pancreatic ductal adenocarcinoma (PDAC). METHODS: The clinical data of consecutive patients with borderline resectable PDAC who received NACT and underwent either LPD or OPD between January 2020 and December 2022 at Fudan University Shanghai Cancer Center was prospectively collected and retrospectively analyzed. RESULTS: The analysis included 57 patients in the OPD group and 20 in the LPD group. Following NACT, the LPD group exhibited a higher median CA19-9 decrease rate compared to the OPD group (85.3% vs. 66.9%, P = 0.042). Furthermore, 3 anatomically borderline PDACs in the LPD group and 5 in the OPD group were downstaged into resectable status (30.0% vs. 12.3%, P = 0.069). According to RECIST criteria, 51 (66.2%) patients in the entire cohort were evaluated as having stable disease. The median operation time for the LPD group was longer than the OPD group (419 vs. 325 min, P < 0.001), while the venous resection rate was 35.0% vs. 43.9%, respectively (P = 0.489). There was no difference in the number of retrieved lymph nodes, with a median number of 18.5 in the LPD group and 22 in the OPD group, and the R1 margin rate (15.0% vs. 12.3%) was also comparable. The incidence of Clavien-Dindo complications (35.0% vs. 66.7%, P = 0.018) was lower in the LPD group compared to the OPD group. Multivariable regression analysis revealed that a tumor diameter > 3 cm before NACT (HR 2.185) and poor tumor differentiation (HR 1.805) were independent risk factors for recurrence-free survival, and a decrease rate of CA19-9 > 70% (OR 0.309) was a protective factor for early tumor recurrence and overall survival. CONCLUSIONS: LPD for PDAC following NACT is feasible and oncologically equivalent to OPD. Effective control of CA19-9 levels is beneficial in reducing early tumor recurrence and improving overall survival.


Assuntos
Adenocarcinoma , Carcinoma Ductal Pancreático , Laparoscopia , Neoplasias Pancreáticas , Humanos , Pancreaticoduodenectomia/efeitos adversos , Estudos Retrospectivos , Terapia Neoadjuvante/efeitos adversos , Recidiva Local de Neoplasia/etiologia , Estudos de Viabilidade , Antígeno CA-19-9 , China , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/cirurgia , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/cirurgia , Adenocarcinoma/tratamento farmacológico , Adenocarcinoma/cirurgia , Laparoscopia/efeitos adversos , Complicações Pós-Operatórias/etiologia , Tempo de Internação
14.
Sci Adv ; 10(4): eadk6633, 2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38277454

RESUMO

Hyperactivation of the oncogenic transcription reflects the epigenetic plasticity of the cancer cells. Su(var)3-9, enhancer of zeste, Trithorax (SET) was described as a nuclear factor that stimulated transcription from the chromatin template. However, the mechanisms of SET-dependent transcription are unknown. Here, we found that overexpression of SET and CDK9 induced very similar transcriptome signatures in multiple cancer cell lines. SET localized in the transcription start site (TSS)-proximal regions and supported the RNA transcription. SET specifically bound the PP2A-C subunit and induced PP2A-A subunit repulsion from the C subunit, which indicated the role of SET as a PP2A-A/C complex disruptor in the TSS-proximal regions. Through blocking PP2A activity, SET assisted CDK9 to maintain Pol II CTD phosphorylation and activated mRNA transcription. Our findings position SET as a key factor that modulates chromatin PP2A activity, promoting the oncogenic transcription in the pancreatic cancer.


Assuntos
Genes Essenciais , Neoplasias Pancreáticas , Humanos , Cromatina/genética , Neoplasias Pancreáticas/genética , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , Transcrição Gênica
15.
BMC Cancer ; 24(1): 87, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38229038

RESUMO

BACKGROUND: Pancreatic ductal adenocarcinoma (PDAC) has a poor prognosis, and its molecular mechanisms are unclear. Nucleolar and spindle-associated protein 1 (NUSAP1), an indispensable mitotic regulator, has been reported to be involved in the development of several types of tumors. The biological function and molecular mechanism of NUSAP1 in PDAC remain controversial. This study explored the effects and mechanism of NUSAP1 in PDAC. METHODS: Differentially expressed genes (DEGs) were screened. A protein‒protein interaction (PPI) network was constructed to identify hub genes. Experimental studies and tissue microarray (TMA) analysis were performed to investigate the effects of NUSAP1 in PDAC and explore its mechanism. RESULTS: Network analysis revealed that NUSAP1 is an essential hub gene in the PDAC transcriptome. Genome heterogeneity analysis revealed that NUSAP1 is related to tumor mutation burden (TMB), loss of heterozygosity (LOH) and homologous recombination deficiency (HRD) in PDAC. NUSAP1 is correlated with the levels of infiltrating immune cells, such as B cells and CD8 T cells. High NUSAP1 expression was found in PDAC tissues and was associated with a poor patient prognosis. NUSAP1 promoted cancer cell proliferation, migration and invasion, drives the epithelial-mesenchymal transition and reduces AMPK phosphorylation. CONCLUSIONS: NUSAP1 is an essential hub gene that promotes PDAC progression and leads to a dismal prognosis by drives the epithelial-mesenchymal transition and reduces AMPK phosphorylation.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Carcinoma Ductal Pancreático/patologia , Transição Epitelial-Mesenquimal/genética , Regulação Neoplásica da Expressão Gênica , Neoplasias Pancreáticas/patologia , Fosforilação , Prognóstico
16.
Acta Pharmacol Sin ; 45(4): 844-856, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38057506

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is an extremely aggressive malignancy prone to recurrence and metastasis. Studies show that tumor cells with increased invasive and metastatic potential are more likely to undergo ferroptosis. SMAD4 is a critical molecule in the transforming growth factor ß (TGF-ß) pathway, which affects the TGF-ß-induced epithelial-mesenchymal transition (EMT) status. SMAD4 loss is observed in more than half of patients with PDAC. In this study, we investigated whether SMAD4-positive PDAC cells were prone to ferroptosis because of their high invasiveness. We showed that SMAD4 status almost determined the orientation of transforming growth factor ß1 (TGF-ß1)-induced EMT via the SMAD4-dependent canonical pathway in PDAC, which altered ferroptosis vulnerability. We identified glutathione peroxidase 4 (GPX4), which inhibited ferroptosis, as a SMAD4 down-regulated gene by RNA sequencing. We found that SMAD4 bound to the promoter of GPX4 and decreased GPX4 transcription in PDAC. Furthermore, TGF-ß1-induced high invasiveness enhanced sensitivity of SMAD4-positive organoids and pancreas xenograft models to the ferroptosis inducer RAS-selective lethal 3 (RSL3). Moreover, SMAD4 enhanced the cytotoxic effect of gemcitabine combined with RSL3 in highly invasive PDAC cells. This study provides new ideas for the treatment of PDAC, especially SMAD4-positive PDAC.


Assuntos
Carcinoma Ductal Pancreático , Ferroptose , Neoplasias Pancreáticas , Proteína Smad4 , Fator de Crescimento Transformador beta1 , Humanos , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patologia , Linhagem Celular Tumoral , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Proteína Smad4/genética , Proteína Smad4/metabolismo , Fator de Crescimento Transformador beta1/metabolismo
17.
Mol Carcinog ; 63(2): 195-208, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37846815

RESUMO

N-myc and STAT interactor (NMI) has been reported to interact with several transcription factors, including STATs family, c-Myc, N-Myc, and BRCA1, to indirectly affect transcription events and participate in multiple cellular processes. However, its function in pancreatic ductal adenocarcinoma (PDAC) has seldom been studied. In this study, we investigated the regulation of NMI on PDAC progression and uncovered the underlying molecular mechanisms. We found that NMI expression was significantly upregulated in PDAC and high NMI expression was related to a worse patient survival. Cell proliferation and migration assay, including cell viability, transwell assay, wound healing, and subcutaneous mouse model were utilized to confirm the function of NMI in PDAC progression. Downregulation of NMI abrogates tumor progression of PDAC both in vitro and in vivo. RNA sequencing was utilized to identify the downstream molecules of NMI and interferon-induced protein with tetratricopeptide repeats 3 (IFIT3) was confirmed to be regulated by NMI in both mRNA and protein level. The binding function of NMI to STAT3 was essential in regulating the IFIT3 expression. Moreover, the NMI/STAT3-IFIT3 axis was identified to markedly facilitate the gemcitabine resistance in PDAC cells.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Animais , Humanos , Camundongos , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/genética , Gencitabina , Regulação Neoplásica da Expressão Gênica , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo
18.
ANZ J Surg ; 94(3): 380-386, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37985579

RESUMO

BACKGROUND: The incidence of postoperative pancreatic fistula (POPF) following enucleation is high, and prophylactic pancreaticojejunostomy (PPJ) is frequently performed. Minimally invasive enucleation (MEN) has been demonstrated to be safe and feasible, leaving most enucleation wounds exposed. METHODS: The clinical data of 40 patients who underwent open enucleation with PPJ at our center between 2012 and 2021 were compared with those of 80 patients who underwent MEN. RESULTS: The MEN group had better outcomes than the PPJ group in terms of intraoperative bleeding (50.0 versus 100.0 mL), postoperative semi-liquid diet recovery (2.0 versus 5.0 days), and postoperative length of stay (7.7 versus 12.5 days). While the MEN group had higher rates of complex enucleation (60.0% versus 40.0%), main pancreatic duct repair (32.5% versus 10.0%), discharge with drains (48.8% versus 25.0%), and grade B POPFs (47.5% versus 17.5%). Both surgical methods effectively preserved pancreatic function; however, two patients in the PPJ group experienced severe haemorrhaging and died. Additionally, during the follow-up period, gastrointestinal bleeding was found and discomfort in the surgical area was reported. CONCLUSION: Pancreatic enucleation combined with PPJ should be avoided, and although a biochemical or grade B POPF may develop after MEN, it can be compensated for by preserving pancreatic function and ensuring a good long-term quality of life in the patients.


Assuntos
Neoplasias Pancreáticas , Pancreaticojejunostomia , Humanos , Pancreaticojejunostomia/efeitos adversos , Pancreaticojejunostomia/métodos , Qualidade de Vida , Neoplasias Pancreáticas/cirurgia , Neoplasias Pancreáticas/complicações , Ductos Pancreáticos/cirurgia , Pancreatectomia/efeitos adversos , Pancreatectomia/métodos , Fístula Pancreática/epidemiologia , Fístula Pancreática/etiologia , Fístula Pancreática/prevenção & controle , Complicações Pós-Operatórias/epidemiologia , Complicações Pós-Operatórias/prevenção & controle , Complicações Pós-Operatórias/etiologia , Pancreaticoduodenectomia/efeitos adversos , Medição de Risco , Estudos Retrospectivos
20.
Ann Surg ; 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38050737

RESUMO

OBJECTIVE: To examine the characteristics of pancreatic cancer patients with long-term survival. BACKGROUND: Although pancreatic cancer is a highly lethal malignancy, a minority of patients experience long-term survival. The characteristics of these patients remain largely unidentified. METHODS: An indolent subgroup was established using carbohydrate antigen 19-9 (CA19-9), which is the best-validated biomarker for pancreatic cancer. Of 1558 patients, 13.9% were included in the CA19-9-normal (≤ 37 U/mL) subgroup. RESULTS: A normal A19-9 level was an independent variable for overall survival (median survival, 18.1 vs. 9.7 months, hazard ratio = 0.53, P < 0.001). The 5-year survival of patients with stage IV CA19-9-normal cancer was higher than that of patients with stage I-IV CA19-9-high cancer (22.4% vs. 6.8%, P = 0.034). The CA19-9-normal subgroup exhibited reduced levels of circulating glucose (P < 0.001) and increased expression of insulin (P < 0.001) compared with the CA19-9-high subgroup. Glucose was a substrate for CA19-9 biosynthesis through the hexosamine biosynthesis pathway. In addition, in pancreatic cancer animal models of diabetes, glucose control decreased CA19-9 levels and improved overall survival. In a clinical trial (NCT05306028) of patients before undergoing major anticancer treatments, glucose control decreased CA19-9 levels in 90.9% of the patients. CONCLUSIONS: CA19-9-normal pancreatic cancer is a strikingly indolent subgroup with low glucose and high insulin. Glucose control is a promising therapeutic strategy for pancreatic cancer.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...